16 research outputs found

    Robust-Adaptive Magnetic Bearing Control of Flexible Matrix Composite Rotorcraft Driveline

    Get PDF
    Recent studies demonstrate that a key advantage of Flexible Matrix Composite (FMC) shaft technology is the ability to accommodate misalignments without need for segmenting or flexible couplings as required by conventional alloy and graphite/epoxy composite shafts. While this is indeed a very promising technology for rotorcraft driveshafts, the high damping loss-factor and thermal stiffness and damping sensitivities of the urethane matrix, makes FMC shafting more prone to self-heating and whirl instabilities. Furthermore, the relatively low bending stiffness and critical speeds of FMC shafts makes imbalance vibration a significant challenge to supercritical operation. To address these issues and advance the state-of-the-art, this research explores Active Magnetic Bearing (AMB) technology together with a robust-adaptive hybrid H&#; feedback/Synchronous Adaptive Vibration Control law designed to ensure stable supercritical operation of a prototype FMC rotorcraft driveline. The effectiveness of the proposed new approach is demonstrated through analysis of a helicopter driveline testbed

    Variable-Speed Simulation of a Dual-Clutch Gearbox Tiltrotor Driveline

    Get PDF
    This investigation explores the variable-speed operation and shift response of a prototypical two-speed dual-clutch transmission tiltrotor driveline in forward flight. Here, a Comprehensive Variable-Speed Rotorcraft Propulsion System Modeling (CVSRPM) tool developed under a NASA funded NRA program is utilized to simulate the drive system dynamics. In this study, a sequential shifting control strategy is analyzed under a steady forward cruise condition. This investigation attempts to build upon previous variable-speed rotorcraft propulsion studies by 1) including a fully nonlinear transient gas-turbine engine model, 2) including clutch stick-slip friction effects, 3) including shaft flexibility, 4) incorporating a basic flight dynamics model to account for interactions with the flight control system. Through exploring the interactions between the various subsystems, this analysis provides important insights into the continuing development of variable-speed rotorcraft propulsion systems

    Stability Analysis of a Flutter Panel with Axial Excitations

    Get PDF

    Two-Speed Gearbox Dynamic Simulation Predictions and Test Validation

    Get PDF
    Dynamic simulations and experimental validation tests were performed on a two-stage, two-speed gearbox as part of the drive system research activities of the NASA Fundamental Aeronautics Subsonics Rotary Wing Project. The gearbox was driven by two electromagnetic motors and had two electromagnetic, multi-disk clutches to control output speed. A dynamic model of the system was created which included a direct current electric motor with proportional-integral-derivative (PID) speed control, a two-speed gearbox with dual electromagnetically actuated clutches, and an eddy current dynamometer. A six degree-of-freedom model of the gearbox accounted for the system torsional dynamics and included gear, clutch, shaft, and load inertias as well as shaft flexibilities and a dry clutch stick-slip friction model. Experimental validation tests were performed on the gearbox in the NASA Glenn gear noise test facility. Gearbox output speed and torque as well as drive motor speed and current were compared to those from the analytical predictions. The experiments correlate very well with the predictions, thus validating the dynamic simulation methodologies

    Design Space Exploration of Pericyclic Transmission with Counterbalance and Bearing Load Analysis

    Get PDF
    The pericyclic transmission provides the opportunity to vastly impact transmission design in rotorcraft due to its ability to provide exceedingly high reduction ratios in a single stage that would normally require multiple gear stages to produce. This could lead to lighter transmissions with fewer components, increased range, reliability, efficiency, speed and decreased cost to maintain. While many previous studies have focused upon the gearing within the pericyclic transmission, this work focused on what influences pericyclic geometry, and how changes in geometry impacts bearing loads. Specifically the loading of bearings that must deliver power from the input shaft to the nutating and rotating gears of the system were of primary concern. A comprehensive look at dynamic loads generated by nutating bodies was performed. Methods to address these dynamic loads via application of counterbalances and deviation from conventional pericyclic transmission designs were utilized to negate the dynamic moment of concern. Finally a static solver was used to determine the bearing loads with updated component geometries and mass moment of inertias that included the required counterbalances

    Comprehensive Modeling and Analysis of Rotorcraft Variable Speed Propulsion System With Coupled Engine/Transmission/Rotor Dynamics

    Get PDF
    This project develops comprehensive modeling and simulation tools for analysis of variable rotor speed helicopter propulsion system dynamics. The Comprehensive Variable-Speed Rotorcraft Propulsion Modeling (CVSRPM) tool developed in this research is used to investigate coupled rotor/engine/fuel control/gearbox/shaft/clutch/flight control system dynamic interactions for several variable rotor speed mission scenarios. In this investigation, a prototypical two-speed Dual-Clutch Transmission (DCT) is proposed and designed to achieve 50 percent rotor speed variation. The comprehensive modeling tool developed in this study is utilized to analyze the two-speed shift response of both a conventional single rotor helicopter and a tiltrotor drive system. In the tiltrotor system, both a Parallel Shift Control (PSC) strategy and a Sequential Shift Control (SSC) strategy for constant and variable forward speed mission profiles are analyzed. Under the PSC strategy, selecting clutch shift-rate results in a design tradeoff between transient engine surge margins and clutch frictional power dissipation. In the case of SSC, clutch power dissipation is drastically reduced in exchange for the necessity to disengage one engine at a time which requires a multi-DCT drive system topology. In addition to comprehensive simulations, several sections are dedicated to detailed analysis of driveline subsystem components under variable speed operation. In particular an aeroelastic simulation of a stiff in-plane rotor using nonlinear quasi-steady blade element theory was conducted to investigate variable speed rotor dynamics. It was found that 2/rev and 4/rev flap and lag vibrations were significant during resonance crossings with 4/rev lagwise loads being directly transferred into drive-system torque disturbances. To capture the clutch engagement dynamics, a nonlinear stick-slip clutch torque model is developed. Also, a transient gas-turbine engine model based on first principles mean-line compressor and turbine approximations is developed. Finally an analysis of high frequency gear dynamics including the effect of tooth mesh stiffness variation under variable speed operation is conducted including experimental validation. Through exploring the interactions between the various subsystems, this investigation provides important insights into the continuing development of variable-speed rotorcraft propulsion systems

    Design Space Exploration of Pericyclic Transmission with Counterbalance and Bearing Load Analysis

    Get PDF
    The pericyclic transmission provides the opportunity to vastly impact transmission design in rotorcraft due to its ability to provide exceedingly high reduction ratios in a single stage that would normally require multiple gear stages to produce. This could lead to lighter transmissions with fewer components, increased range, reliability, efficiency, speed and decreased cost to maintain. While many previous studies have focused upon the gearing within the pericyclic transmission, this work focused on what influences pericyclic geometry, and how changes in geometry impacts bearing loads. Specifically the loading of bearings that must deliver power from the input shaft to the nutating and rotating gears of the system were of primary concern. A comprehensive look at dynamic loads generated by nutating bodies was performed. Methods to address these dynamic loads via application of counterbalances and deviation from conventional pericyclic transmission designs were utilized to negate the dynamic moment of concern. Finally a static solver was used to determine the bearing loads with updated component geometries and mass moment of inertias that included the required counterbalances
    corecore